a2 United States Patent

El Defrawy et al.

US009489522B1

US 9,489,522 B1
Nov. 8, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(60)

(1)

(52)

(58)

METHOD FOR SECURE AND RESILIENT
DISTRIBUTED GENERATION OF ELLIPTIC
CURVE DIGITAL SIGNATURE ALGORITHM
(ECDSA) BASED DIGITAL SIGNATURES
WITH PROACTIVE SECURITY

Applicant: HRL Laboratories, LL.C, Malibu, CA

(US)

Inventors: Karim El Defrawy, Santa Monica, CA
(US); Joshua D. Lampkins, Gardena,
CA (US)

Assignee: HRL Laboratories, LL.C, Malibu, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/686,538

Filed: Apr. 14, 2015

Related U.S. Application Data

Continuation-in-part of application No. 14/207,321,
filed on Mar. 12, 2014, which is a continuation-in-part
of'application No. 14/207,483, filed on Mar. 12, 2014.

Provisional application No. 61/780,638, filed on Mar.
13, 2013, provisional application No. 61/780,757,
filed on Mar. 13, 2013, provisional application No.
61/981,191, filed on Apr. 17, 2014.

Int. CL.

GOGF 21/00 (2013.01)

GOG6F 21/60 (2013.01)

HO4L 9/32 (2006.01)

U.S. CL

CPC GO6F 21/606 (2013.01); HO4L 9/3218
(2013.01)

Field of Classification Search

CPC i GO6F 21/606; HO4L 9/3218

USPC e e 726/26

See application file for complete search history.

Share,{sec,) /\Ff)z 502
N70zJHVOde
500 1 share,(secy) gﬁg‘:e?:le)ga

Share,(sec,)

- Share, (sec,,)
302 ”“@ @/\— 302

Share,(sec,) | 500

(56) References Cited

U.S. PATENT DOCUMENTS

4,633,470 A 12/1986 Welch et al.

5,625,692 A * 4/1997 Herzberg HO41 9/085
380/286
7,003,677 B1* 2/2006 Herzberg HO4L 9/0833
380/286
7,313,701 B2* 12/2007 Frankel G06Q 20/382
705/64

8,824,672 Bl 9/2014 Gomathisankaran
2010/0037055 Al* 2/2010 Fazio HOAL 9/3218
713/171

(Continued)

OTHER PUBLICATIONS

Ibrahim, Maged H., et al. “A robust threshold elliptic curve digital
signature providing a new verifiable secret sharing scheme.” Cir-
cuits and Systems, 2003 IEEE 46th Midwest Symposium on. vol. 1.
IEEE, 2003.*

(Continued)

Primary Examiner — Syed Zaidi
(74) Attorney, Agent, or Firm — Tope-McKay &
Associates

(57) ABSTRACT

Described is system for generation of elliptic curve digital
signature algorithm (ECDSA) based digital signatures. A
Secret-Share protocol is initialized between a client and a set
of servers to share a set of shares of a private key s among
the set of servers. The set of servers initializes a protocol to
generate a digital signature on a message using the set of
shares of the private key s without reconstructing or reveal-
ing the private key s. The set of servers periodically initial-
izes a Secret-Redistribute protocol on each share of the
private key s to re-randomize the set of shares. A Secret-
Open protocol is initialized to reveal the private key s to an
intended recipient, wherein the private key s is used to
compute the digital signature.

15 Claims, 6 Drawing Sheets

Share,(sec,)

Share,(sec;) Share,{sec,)
Share,(sec,) 500 Sharey(sec,)

500 | Share,{(secy) Share,(sec,)

Share, (sec,)

/L‘@‘__‘ -
302

Proactive Refresh

g o e

Shares{secy)
Share,(sec,)

500+ 502 Shares(sec,)
\/4WXrGL8NLg

Share,(sec,)
Share,(sec,)
500 1 Share(sec,)
Share,(sec,)

US 9,489,522 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0179911 Al
2012/0254619 Al
2013/0191632 Al
2013/0268760 Al
2014/0089683 Al

7/2012 Zheng et al.
10/2012 Dhuse et al.

7/2013 Spector et al.
10/2013 Bono et al.

3/2014 Miller et al.

OTHER PUBLICATIONS

D. Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In CRYPTO ’91, LNCS 576, pp. 420-432, 1991.

Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky, Near-linear
unconditionally-secure multiparty computation with a dishonest
minority. Cryptography ePrint Archive, Report 2011/629, 2011, pp.
1-21.

Ivan Damgard and Jesper Buus Nielsen. Scalable and uncondition-
ally secure multiparty computation. In CRYPTO, pp. 572-590,
2007.

The Digital Signature Standard (DSS) (Federal Information Pro-
cessing Standards Publication FIPS 186-4), Jul. 2013, pp. 1-130.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

P. Feldman. A Practical Scheme for Non-Interactive Verifiable
Secret Sharing. In Proc. of the 28th IEEE Symposium on the
Foundations of Computer Science, pp. 427-437, 1987.

Steven Goldfeder, Joseph Bonneau, Edward W. Felten, Joshua A.
Kroll, Arvind Narayanan, “Securing Bitcoin Wallets via Threshold
Signatures”, pp. 1-11. This paper is currently (Apr. 7, 2014)
unpublished in proceedings of a conference or journal; available at
http://www.cs.princeton.edu/~stevenag/bitcoin_ threshold__signa-
tures.pdf.

Ibrahim, M.H.; Ali, I.A.; Ibrahim, I.I.; El-Sawi, A. H., A robust
threshold elliptic curve digital signature providing a new verifiable
sharing scheme, Circuits and Systems, 2003 IEEE 46th Midwest
Symposium on , vol. 1, No., pp. 276-280, vol. 1, Dec. 30, 2003 doi:
10.1109/MWSCAS.2003.1562272.

Don Johnson, Alfred Menezes, Scott Vanstone, The Elliptic Curve
Digital Signature Algorithm (ECDSA), In International Journal of
Information Security, vol. 1, Issue 1, pp. 36-63, 2001.

Rafail Ostrovsky and Moti Yung. How to withstand mobile virus
attacks. In Proceedings of the tenth annual ACM symposium on
Principles of distributed computing, pp. 51-59. ACM Press, 1991.
Torben P. Pedersen, Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO, vol. 576 of Lecture
Notes in Computer Science, pp. 129-140. Springer, 1991.

David Schultz. Mobile Proactive Secret Sharing. PhD thesis, Mas-
sachusetts Institute of Technology, 2007, pp. 1-157.

Adi Shamir. How to share a secret. Commun. ACM, 22(11), pp.
612-613, 1979.

Hao Wang, Zhongfu Wu, Xin Tan, A New Secure Authentication
Scheme Based Threshold ECDSA for Wireless Sensor Network. In
Security and Management, pp. 129-133, 2006.

Working Draft, American National Standard X9.62-1998 Public
Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA), pp. 7-13, 1998.
International Search Report of the International Searching Authority
for PCT/US2015/025804; date of mailing Jul. 14, 2015.

The Written Opinion of the International Searching Authority for
PCT/US2015/025804; date of mailing Jul. 14, 2015.

Office Action 1 for U.S. Appl. No. 14/207,321. Date mailed: May
18, 2015.

Ham, Lein, and Changlu Lin, “Strong (n, t, n) verifiable secret
sharing scheme,” Information Sciences 180.16 (2010), pp. 3059-
3064.

Office Action 1 Response for U.S. Appl. No. 14/207.321. Date
mailed: Aug. 18, 2015.

Office Action 2 for U.S. Appl. No. 14/207,321. Date mailed: Dec.
14, 2015.

Office Action 2 Response for U.S. Appl. No. 14/207,321. Date
mailed: Apr. 4, 2016.

Notice of Allowance for U.S. Appl. No. 14/207,321. Date mailed
May 4, 2016.

Office Action 1 for U.S. Appl. No. 14/207,483. Date maiied: May
22, 2015.

Bai, Li, and XuKai Zou, “A proactive secret sharing scheme in
matrix projection method,” International Journal of Security and
Networks 4.4 (2009), pp. 201-209.

Office Action 1 Respons or U.S. Appl. No. 14/207,483. Date mailed:
Sep. 22, 2015.

Office Action 2 for U.S. Appl. No. 14/207,483. Date malied: Nov.
2, 2015.

Office Action 2 Response for U.S. Appl. No. 14/207,483. Date
mailed: Apr. 4, 2016.

Office Action 3 for U.S. Appl. No. 14/207,483. Date mailed: May
2, 2016.

Damgard, Ivan, and Jesper Buus Nielsen. “Scalable and uncondi-
tionally secure multiparty computation,” Advances in Cryptology—
CRYPTO 2007. Springer Berlin Heidelberg, 2007, pp. 572-590.
International Preliminary Report on Patentability for PCT/UIS2015/
025804; date of mailing Mar. 17, 2016.

Ibrahim, Maged H., et al. “A robust threshold elliptic curve digital
signature providing a new verifiable secret sharing scheme ” Cir-
cuits and Systems. 2003 IEEE 46th Midwest Symposium on. vol. I.
IEEE, 2003, pp. 277-279.

Alfred V. Aho, John E. Hoperoft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms, Addison-Wesley, 1974 pp. 299-
300.

Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto
Strobl. Asynchronous verifiable secret sharing and proactive
cryptosystems. In ACM Conference on Computer and Communi-
cations Security, pp. 88-97, 2002.

Ivan Damgard and Jesper Buus Nielsen. Scalable and uncondition-
ally secure multiparty computation. In CRYPTO, pp. 572-690,2007.
Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new
access structures and its applications. Jul. 1997. Technical Report
ISSE TR-97-01, George Mason University.

Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage. In
CRYPTO, pp. 39-352, 1995.

Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
CRYPTO, vol. 576 of Lecture Notes in Computer Science, pp.
129-140. Springer, 1991.

David Schultz. Mobile Proactive Secret Sharing. PhD thesis, Mas-
sachusetts Institute of Technology. 2007.

Adi Shamir. How to share a secret. Commun. ACM. 22(11):612-
613, 1979.

Theodore M. Wang, Chenxi Wang, and Jeannette M. Wing. Verifi-
able secret redistribution for archive system. In IEEE Security in
Storage Workshop, pp. 94-106, 2002.

Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. Apss:
proactive secret sharing in asynchronous systems ACM Trans. Inf.
Syst. Secur., 8(3):259-286, 2005.

Eli Ben-Sasson, Serge Fehr, and Rafaii Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest
minority. Cryptology ePrint Archive, Report 2011/629, 2011.
Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party
computation with dispute control. In TCC, pp. 305-328, 2006.
Ivan Damg_ ard and Jesper Buus Nielsen. Scalable and uncondi-
tionally secure multiparty computation. In CRYPTO, pp. 572-690,
2007.

Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage. In
CRYPTO, pp. 339-352, 1995.

Rafail Ostrovsky and Moti Yung. How to withstand mobile virus
attacks. In In Proceedings of the tenth annual ACM symposium on
Principles of distributed computing, pp. 51-59. ACM Press, 1991.
Adi Shamir. How to share a secret. Commun. ACM. 22(11):612-
613, 1979

Alfred V. Aho, John E. Hopecroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, pp. 299-300,
1974.

* cited by examiner

US 9,489,522 B1

Sheet 1 of 6

Nov. 8, 2016

U.S. Patent

L Ol
8l giT 2 o
8oIA8(] B0IAB(]
M oSmQ sbeiois [OAU0D aoineQ
g 108400 mnduy
Z0L sng Bjeq/sseippy
o 80k 9ot
oiv ur 2 .
B0BLBI| Aowsy Asowsapy 10553001
S{IBJOA-UON SINBION

U.S. Patent Nov. 8, 2016 Sheet 2 of 6 US 9,489,522 B1

200

FIG. 2

U.S. Patent Nov. 8, 2016 Sheet 3 of 6 US 9,489,522 B1

302

FIG. 3

B

US 9,489,522 B1

Sheet 4 of 6

Nov. 8, 2016

U.S. Patent

0ov
A

¥ 'Old

(*z8)=("w)*vsQo3

aa«!i.ssm..!!
(2)=("wveqgos

A

Mo m——-

(Fz5)={*w)®ys003

¢0g

TAS I

20t

US 9,489,522 B1

Sheet 5 of 6

Nov. 8, 2016

U.S. Patent

G Old
{*oss)taieys
(!oes)faseyg + 008
{(“nes)taleys
(*ves)airyg
YOS

(

Yssljsy SAOEOIH
c0¢ c0g

¢

(*oos)teieys @ummmmgmzw
(roas)leleys (fses)'aleuys | 00g 008 @ummvwm_mcw
(®oss)?aieys | 00 (Zoss)roreyg {“oes)taieyS
(Toesioieyg (‘oes)raseug BOXNXI0be
(rovs)Peleus S
AL

BINSIDIXMP N
(Foss)tateys zog 008
(“oas)tairyg
{toss)taieys

(voes)aieys

{toas)taieys

OPOAHIZ0/LN
A%

004

i by 1)
206 {*ces)areysg

US 9,489,522 B1

Sheet 6 of 6

Nov. 8, 2016

U.S. Patent

9 Old

10003104d Usd(-jo1088 /\/

_, 909

10001040 YSB40N-8A0B0I]

v0S

ﬁ N

1000)01d 8INGLISIPON-18I0S \~

) 09

j000104d aunjeubiS-1sngoy o~

+ 209

|000104d aIBYS-181008

A\

009

US 9,489,522 Bl

1
METHOD FOR SECURE AND RESILIENT
DISTRIBUTED GENERATION OF ELLIPTIC
CURVE DIGITAL SIGNATURE ALGORITHM
(ECDSA) BASED DIGITAL SIGNATURES
WITH PROACTIVE SECURITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a Continuation-in-Part Application of U.S. Non-
Provisional application Ser. No. 14/207,321, filed Mar. 12,
2014, entitled, “System and Method for Mobile Proactive
Secret Sharing,” which is a Non-Provisional Application of
U.S. Provisional Patent Application No. 61/780,638, filed
Mar. 13, 2013, entitled, “An Efficient Protocol for Mobile
Proactive Secret Sharing,” the entirety of which are hereby
incorporated by reference.

This is ALSO a Continuation-in-Part Application of U.S.
Non-Provisional application Ser. No. 14/207,483, filed Mar.
12, 2014, entitled, “System and Method for Mobile Proac-
tive Secure Multi-Party Computation (MPMPC) Using
Commitments,” which is a Non-Provisional Application of
U.S. Provisional Application No. 61/780,757, filed on Mar.
13, 2013, entitled, “Efficient Protocol for Mobile Proactive
Secure Multiparty Computation (MPMPC) Using Commit-
ments,” the entirety of which are hereby incorporated by
reference.

This is ALSO a Non-Provisional Application of U.S.
Provisional Patent Application No. 61/981,191, filed Apr.
17, 2014, entitled, “A Method for Secure and Resilient
Distributed Generation of Elliptic Curve Digital Signature
Algorithm (ECDSA) Based Digital Signatures with Proac-
tive Security,” the entirety of which is hereby incorporated
by reference.

BACKGROUND OF INVENTION

(1) Field of Invention

The present invention relates to a system for generating
Elliptic Curve Digital Signature Algorithm (ECDSA) based
digital signatures and, more particularly, to a system for
generating ECDSA based digital signatures in a distributed
manner.

(2) Description of Related Art

Digital signatures are essential to the operation of secure
distributed systems, and authentication and access control.
Elliptic Curve Digital Signature Algorithm (ECDSA) based
digital signatures, for example, are used to ensure integrity
of transmitted data online, can be used for authentication of
data and entities online, and are also used in a variety of
digital currency and financial transactions.

There are a few previous approaches which describe
generation of digital signatures for secure systems. In Lit-
erature Reference No. 15 of the List of Incorporated Litera-
ture References, the protocols and algorithms consider only
passive adversaries and do not provide proactive security.
Passive adversaries are only able to spy on corrupted nodes
as opposed to malicious adversaries, which are able to spy
on corrupted nodes and cause them to send arbitrary mes-
sages as the adversary desires. Proactive security enables the
storing of information in a secure, distributed fashion in a
hostile environment. In Literature Reference No. 8, the
protocols and algorithms consider a threshold of n/3 for
malicious adversaries and do not provide proactive security.

Thus, a continuing need exists for as set of protocols to
proactivize the computation and storage of digital signatures
with a higher threshold of servers that can be corrupted or

15

20

25

30

35

40

45

50

55

60

65

2

compromised while still maintaining confidentiality and
correctness of the digital signature.

SUMMARY OF THE INVENTION

The present invention relates to a system for generating
Elliptic Curve Digital Signature Algorithm (ECDSA) based
digital signatures and, more particularly, to a system for
generating ECDSA based digital signatures in a distributed
manner. The system comprises one or more processors and
a memory having instructions such that when the instruc-
tions are executed, the one or more processors perform
multiple operations. A Secret-Share protocol is initialized
between a client C and a set of n servers, wherein the client
C shares a set of shares of a private key s among the set of
n servers. The set of n servers initializes a protocol to
generate a digital signature on a message m using the set of
shares of the private key s without reconstructing or reveal-
ing the private key s. The set of n servers periodically
initializes a Secret-Redistribute protocol on each share of the
private key s to re-randomize the set of shares.

In another aspect, a Secret-Open protocol is initialized to
reveal the private key s to an intended recipient, wherein the
private key s is used to compute the digital signature.

In another aspect, in order for an adversary to retrieve the
private key s, the adversary must compromise a plurality of
servers in the set of n servers.

In another aspect, a threshold t of up to n/2 of the set of
n servers can be completely corrupted while the confiden-
tiality of the private key s and correctness of the digital
signature remain uncompromised.

In another aspect, if a majority of the set of shares of the
private key s is not corrupted, then the set of n servers jointly
restore any corrupted shares.

In another aspect, corrupted servers are restored to an
uncorrupted state.

In another aspect, the present invention also comprises a
method for causing a processor to perform the operations
described herein.

Finally, in yet another aspect, the present invention also
comprises a computer program product comprising com-
puter-readable instructions stored on a non -transitory com-
puter-readable medium that are executable by a computer
having a processor for causing the processor to perform the
operations described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descrip-
tions of the various aspects of the invention in conjunction
with reference to the following drawings, where:

FIG. 1 is a block diagram depicting the components of a
system for generating Elliptic Curve Digital Signature Algo-
rithm (ECDSA) based digital signatures according to the
principles of the present invention;

FIG. 2 is an illustration of a computer program product
according to the principles of the present invention;

FIG. 3 is an illustration of a client uploading shares of a
private key s to a set of servers according to the principles
of the present invention;

FIG. 4 is an illustration of the set of servers generating
signatures on messages using their shares of the private key
s without revealing the private key s according to the
principles of the present invention;

FIG. 5 is an illustration of the set of servers periodically
performing a Proactive-Refresh protocol to correct any

US 9,489,522 Bl

3

shares that may have been corrupted according to the
principles of the present invention; and

FIG. 6 is a flow diagram illustrating distributed generation
of elliptic curve digital signature algorithm (ECDSA) based
digital signatures with proactive security according to the
principles of the present invention.

DETAILED DESCRIPTION

The present invention relates to a system for generating
Elliptic Curve Digital Signature Algorithm (ECDSA) based
digital signatures and, more particularly, to a system for
generating ECDSA based digital signatures in a distributed
manner. The following description is presented to enable one
of ordinary skill in the art to make and use the invention and
to incorporate it in the context of particular applications.
Various modifications, as well as a variety of uses in
different applications will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to a wide range of aspects. Thus, the present
invention is not intended to be limited to the aspects pre-
sented, but is to be accorded the widest scope consistent with
the principles and novel features disclosed herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, it will be
apparent to one skilled in the art that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

The reader’s attention is directed to all papers and docu-
ments which are filed concurrently with this specification
and which are open to public inspection with this specifi-
cation, and the contents of all such papers and documents are
incorporated herein by reference. All the features disclosed
in this specification, (including any accompanying claims,
abstract, and drawings) may be replaced by alternative
features serving the same, equivalent or similar purpose,
unless expressly stated otherwise. Thus, unless expressly
stated otherwise, each feature disclosed is one example only
of a generic series of equivalent or similar features.

Furthermore, any element in a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, is not to be
interpreted as a “means” or “step” clause as specified in 35
U.S.C. Section 112, Paragraph 6. In particular, the use of
“step of” or “act of” in the claims herein is not intended to
invoke the provisions of 35 U.S.C. 112, Paragraph 6.

Please note, if used, the labels left, right, front, back, top,
bottom, forward, reverse, clockwise and counter-clockwise
have been used for convenience purposes only and are not
intended to imply any particular fixed direction. Instead,
they are used to reflect relative locations and/or directions
between various portions of an object. As such, as the
present invention is changed, the above labels may change
their orientation.

Before describing the invention in detail, first a list of
cited literature references used in the description is provided.
Next, a description of various principal aspects of the
present invention is provided. Finally, specific details of the
present invention are provided to give an understanding of
the specific aspects.

(1) List of Incorporated Literature References

The following references are incorporated and cited
throughout this application. For clarity and convenience, the
references are listed herein as a central resource for the

10

15

20

25

30

35

40

45

50

55

60

65

4

reader. The following references are hereby incorporated by
reference as though fully included herein. The references are
cited in the application by referring to the corresponding
literature reference number, as follows:

1. D. Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO *91, LNCS 576, pp. 420-432,
1991.

2. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky.
Near-linear unconditionally-secure multiparty computation
with a dishonest minority. Cryptology ePrint Archive,
Report 2011/629, 2011.

3. Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient
multi-party computation with dispute control. In TCC, pages
305-328, 2006.

4. Ivan Damgard and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In
CRYPTO, pages 572-590, 2007.

5. Federal Information Processing Standards Publication.
The Digital Signature Standard (DSS) (FIPS 186-4).

6. P. Feldman. A Practical Scheme for Non-Interactive
Verifiable Secret Sharing. In Proc. Of the 28th IEEE Sym-
posium on the Foundations of Computer Science, pages
427-437, 1987.

7. Steven Goldfeder, Joseph Bonneau, Edward W. Felten,
Joshua A. Kroll, Arvind Narayanan, “Securing Bitcoin Wal-
lets via Threshold Signatures”.

8. Ibrahim, M. H.; Ali, I. A.; Ibrahim, I. I.; El-Sawi, A. H.,
A robust threshold elliptic curve digital signature providing
a new verifiable secret sharing scheme, Circuits and Sys-
tems, 2003 IEEE 46th Midwest Symposium on, vol. 1, no.,
pp. 276, 280 Vol. 1, 30-30 Dec. 2003.

9. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk,
and Moti Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In CRYPTO, pages 339-352, 1995.

10. Don Johnson, Alfred Menezes, Scott Vanstone, The
Elliptic Curve Digital Signature Algorithm (ECDSA), In
International Journal of Information Security, Volume 1,
Issue 1, pages 36-63, 2001.

11. Rafail Ostrovsky and Moti Yung. How to withstand
mobile virus attacks. In Proceedings of the tenth annual
ACM symposium on Principles of distributed computing,
pages 51-59. ACM Press, 1991.

12. Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In CRYPTO, vol-
ume 576 of Lecture Notes in Computer Science, pages
129-140. Springer, 1991.

13. David Schultz. Mobile Proactive Secret Sharing. PhD
thesis, Massachusetts Institute of Technology, 2007.

14. Adi Shamir. How to share a secret. Commun. ACM,
22(11):612-613, 1979.

15. Hao Wang, Zhongfu Wu, Xin Tan. A New Secure
Authentication Scheme Based Threshold ECDSA For Wire-
less Sensor Network. In Security and Management, pages
129-133, 2006.

16. Working Draft, American National Standard X9.62-
1998 Public Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA), pgs. 7-13, 1998.

(2) Principal Aspects

The present invention has three “principal” aspects. The
first is a system for generating Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) based digital signatures and,
more particularly, to a system for generating ECDSA based
digital signatures in a distributed manner. The system is
typically in the form of a computer system operating soft-
ware or in the form of a “hard-coded” instruction set. This
system may be incorporated into a wide variety of devices

US 9,489,522 Bl

5

that provide different functionalities. The second principal
aspect is a method, typically in the form of software,
operated using a data processing system (computer). The
third principal, aspect is a computer program product. The
computer program product generally represents computer-
readable instructions stored on a non-transitory computer-
readable medium such as an optical storage device, e.g., a
compact disc (CD) or digital versatile disc (DVD), or a
magnetic storage device such as a floppy disk or magnetic
tape. Other, non-limiting examples of computer-readable
media include hard disks, read-only memory (ROM), and
flash-type memories. These aspects will be described in
more detail below.

A block diagram depicting an example of a system (i.e.,
computer system 100) of the present invention is provided in
FIG. 1. The computer system 100 is configured to perform
calculations, processes, operations, and/or functions associ-
ated with a program or algorithm. In one aspect, certain
processes and steps discussed herein are realized as a series
of instructions (e.g., software program) that reside within
computer readable memory units and are executed by one or
more processors of the computer system 100. When
executed, the instructions cause the computer system 100 to
perform specific actions and exhibit specific behavior, such
as described herein.

The computer system 100 may include an address/data
bus 102 that is configured to communicate information.
Additionally, one or more data processing units, such as a
processor 104 (or processors), are coupled with the address/
data bus 102. The processor 104 is configured to process
information and instructions. In an aspect, the processor 104
is a microprocessor. Alternatively, the processor 104 may be
a different type of processor such as a parallel processor, or
a field programmable gate array.

The computer system 100 is configured to utilize one or
more data storage units. The computer system 100 may
include a volatile memory unit 106 (e.g., random access
memory (“RAM”), static RAM, dynamic RAM, etc.)
coupled with the address/data bus 102, wherein a volatile
memory unit 106 is configured to store information and
instructions for the processor 104. The computer system 100
further may include a non-volatile memory unit 108 (e.g.,
read-only memory (“ROM”), programmable ROM
(“PROM”), erasable programmable ROM (“EPROM”),
electrically erasable programmable ROM “EEPROM”),
flash memory, etc.) coupled with the address/data bus 102,
wherein the non-volatile memory unit 108 is configured to
store static information and instructions for the processor
104. Alternatively, the computer system 100 may execute
instructions retrieved from an online data storage unit such
as in “Cloud” computing. In an aspect, the computer system
100 also may include one or more interfaces, such as an
interface 110, coupled with the address/data bus 102. The
one or more interfaces are configured to enable the computer
system 100 to interface with other electronic devices and
computer systems. The communication interfaces imple-
mented by the one or more interfaces may include wireline
(e.g., serial cables, modems, network adaptors, etc.) and/or
wireless (e.g., wireless modems, wireless network adaptors,
etc.) communication technology.

In one aspect, the computer system 100 may include an
input device 112 coupled with the address/data bus 102,
wherein the input device 112 is configured to communicate
information and command selections to the processor 100.
In accordance with one aspect, the input device 112 is an
alphanumeric input device, such as a keyboard, that may
include alphanumeric and/or function keys. Alternatively,

10

15

20

25

30

35

40

45

50

55

60

65

6

the input device 112 may be an input device other than an
alphanumeric input device. In an aspect, the computer
system 100 may include a cursor control device 114 coupled
with the address/data bus 102, wherein the cursor control
device 114 is configured to communicate user input infor-
mation and/or command selections to the processor 100. In
an aspect, the cursor control device 114 is implemented
using a device such as a mouse, a track-ball, a track -pad, an
optical tracking device, or a touch screen. The foregoing
notwithstanding, in an aspect, the cursor control device 114
is directed and/or activated via input from the input device
112, such as in response to the use of special keys and key
sequence commands associated with the input device 112. In
an alternative aspect, the cursor control device 114 is con-
figured to be directed or guided by voice commands.

In an aspect, the computer system 100 further may include
one or more optional computer usable data storage devices,
such as a storage device 116, coupled with the address/data
bus 102. The storage device 116 is configured to store
information and/or computer executable instructions. In one
aspect, the storage device 116 is a storage device such as a
magnetic or optical disk drive (e.g., hard disk drive
(“HDD”), floppy diskette, compact disk read only memory
(“CD-ROM™), digital versatile disk (“DVD”)). Pursuant to
one aspect, a display device 118 is coupled with the address/
data bus 102, wherein the display device 118 is configured
to display video and/or graphics. In an aspect, the display
device 118 may include a cathode ray tube (“CRT”), liquid
crystal display (“LCD”), field emission display (“FED”),
plasma display, or any other display device suitable for
displaying video and/or graphic images and alphanumeric
characters recognizable to a user.

The computer system 100 presented herein is an example
computing environment in accordance with an aspect. How-
ever, the non-limiting example of the computer system 100
is not strictly limited to being a computer system. For
example, an aspect provides that the computer system 100
represents a type of data processing analysis that may be
used in accordance with various aspects described herein.
Moreover, other computing systems may also be imple-
mented. Indeed, the spirit and scope of the present technol-
ogy is not limited to any single data processing environment.
Thus, in an aspect, one or more operations of various aspects
of the present technology are controlled or implemented
using computer-executable instructions, such as program
modules, being executed by a computer. In one implemen-
tation, such program modules include routines, programs,
objects, components and/or data structures that are config-
ured to perform particular tasks or implement particular
abstract data types. In addition, an aspect provides that one
or more aspects of the present technology are implemented
by utilizing one or more distributed computing environ-
ments, such as where tasks are performed by remote pro-
cessing devices that are linked through a communications
network, or such as where various program modules are
located in both local and remote computer-storage media
including memory -storage devices.

An illustrative diagram of a computer program product
(i.e., storage device) embodying the present invention is
depicted in FIG. 2. The computer program product is
depicted as floppy disk 200 or an optical disk 202 such as a
CD or DVD. However, as mentioned previously, the com-
puter program product generally represents computer-read-
able instructions stored on any compatible non-transitory
computer-readable medium. The term “instructions” as used
with respect to this invention generally indicates a set of
operations to be performed on a computer, and may repre-

US 9,489,522 Bl

7

sent pieces of a whole program or individual, separable,
software modules. Non-limiting examples of “instruction”
include computer program code (source or object code) and
“hard-coded” electronics (i.e. computer operations coded
into a computer chip). The “instruction” is stored on any
non-transitory computer-readable medium, such as in the
memory of a computer or on a floppy disk, a CD-ROM, and
a flash drive. In either event, the instructions are encoded on
a non-transitory computer-readable medium.

(3) Specific Details of the Invention

Described is a system that allows a group of servers to
digitally sign messages on behalf of a client. Messages are
signed using the Elliptic Curve Digital Signature Algorithm
(ECDSA). The ECDSA is described in Literature Reference
No. 6. ECDSA signatures are generated using a private key,
and signatures are verified using a corresponding public key.
The signature on a message m using private key s is denoted
as ECDSA_s (m). The algorithm is such that anyone holding
the public key can easily verify that ECDSA_s (m) is a
signature on message m, but no one can generate ECDSA_s
(m) without knowing s.

A client 300 (computer hardware or software) first
uploads shares of his/her private key s to a set of servers 302
using a secret sharing algorithm, as shown in FIG. 3. This is
done such that an adversary can learn the private key s only
if he/she learns a majority of the shares. The servers 302 can
then use their shares to jointly generate signatures 400 on
messages 402 without reconstructing or revealing the private
key, as depicted in FIG. 4. As shown in FIG. 5, over the
course of the protocol, some of the shares in the sets of
shares 500 may become corrupted (forming corrupted shares
502), either due to accidental faults or malicious behavior.
Thus, the servers 302 periodically perform a Proactive
-Refresh protocol 504 to correct any shares that may have
been corrupted. So long as the majority of shares 500 of any
given private key are not corrupted, this will allow the
servers 302 to jointly restore corrupted shares 502 to an
uncorrupted state.

Described are algorithms and protocols that allow a set of
n servers to generate ECDSA based digital signatures in a
distributed manner with the following security and resilience
guarantees. A threshold (t) of up to n/2 (i.e., t<n/2), of the n
servers can be maliciously and completely corrupted or
compromised, and the confidentiality of the private key used
to generate the signature will not be compromised. Further-
more, the correctness of the generated signature will not be
compromised. Correctness of a digital signature is defined in
Literature Reference No. 10.

Additionally, the distributed (secret shared) private key
used to generate the ECDSA signature is periodically
refreshed to ensure long term security against mobile adver-
saries (i.e., the protocols implement proactive security guar-
antees). Proactive security is also guaranteed against mali-
cious adversaries, not only passive or semi-honest ones.
Malicious adversaries are able to spy on corrupted nodes and
cause them to send arbitrary messages as the adversary
desires. For the purposes of the present invention, proactive
security means that the system is secure in the presence of
a mobile adversary which may eventually corrupt all of the
nodes (or servers), although no more than a threshold
number may be corrupt at any given time. Each of these
aspects will be described in further detail below.

(3.1) Preliminaries

Below is a table of symbols used in the protocols
described herein.

10

20

25

35

40

45

50

55

60

65

Table of Symbols
P The set of servers currently on-line and engaged
in the protocol.
n The number of servers currently engaged in the
protocol.

1 The maximum number of servers that a malicious
party can corrupt per stage without revealing the
secret. This is called the threshold of corruption.

C The client on behalf of whom the servers store the
private key.

s The private key used to sign messages.

d The degree of the polynomial used to share the
secret.

Corr The set of servers known by every server to be

corrupt

Group elements used for Pedersen commitments,
where g is an element of order q in an elliptic
curve, and h is an element for which no servers
know log, (h).

Let n denote the number of servers, and denote the set of
servers by P={P,}"=1. The private keys are redistributed
(i.e., refreshed) periodically. The period between adjacent
redistributions is called a stage. Also, the period before the
first redistribution is a stage, and the period after the last
redistribution is a stage. Let t denote the threshold of
corruption (i.e., the maximum number of servers an adver-
sary may corrupt during the current stage). The adversary
may adaptively corrupt and de-corrupt servers at will, so
long as the number of corruptions per stage does not exceed
the threshold. Any server that is corrupt during a secret
redistribution is considered to be corrupt in both adjacent
stages. It is required that t<n/2 at each stage. Let Corr denote
the set of servers that are known by everyone to be corrupt;
it is initially assumed that Corr=.

Assume a synchronous network model with a secure
broadcast channel. Point-to-point communications will not
be used in the protocol descriptions, although any imple-
mentation of the protocols would likely emulate a broadcast
channel over point-to-point channels using a broadcast pro-
tocol. Secure erasure is also assumed, meaning that each
server can erase its data in such a way that if the adversary
later corrupts that server, the adversary cannot feasibly learn
any information on what was erased.

The secret sharing scheme used in the system according
to the principles of the present invention is based on
Shamir’s secret sharing scheme (see Literature Reference
No. 14 for a description of Shamir’s secret sharing scheme)
in which the shares of a secret (the private key in the ECDSA
case described here) are points on a polynomial, the constant
term of the polynomial being the secret. Denote by d the
degree of the polynomial used to distribute the secret.
Therefore, knowing any d+1 points on the polynomial
allows one to interpolate the secret, but knowing d or fewer
points does not reveal any information about the secret. For
the polynomials that store the private keys, set d=t is set.

Secrets will be shared using Pedersen commitments
(which are described in Literature Reference No. 12) and, in
sonic instances, Feldman commitments (which are described
in Literature Reference No. 6). To that end, let q be a large
prime, and let g be an element of order q over some elliptic
curve such that the discrete logarithm assumption holds for
<g> (where <g> is the group generated by g). Furthermore,
let he<g> such that no server 302 knows the discrete
logarithm of h. That is, no server 302 knows keZ, such that
kg=h. If one wants to share a secret with polynomial peZ [x]
(i-e., 1(0) is the secret), then an auxiliary polynomial veZ [x]
is also created. Letting ¢, denote the evaluation point of P,,

US 9,489,522 Bl

9

each server P, receives his share pa,; of the secret, together
with vo,. Let p, denote the coeflicient of x* in p, (and
similarly for v,). Then, when the secret is shared, the values
W,g+v,h—called Pedersen commitments—are broadcast for
each k. This means that p(c,)g+v(a,)h are also public
knowledge (as they can computed from the p,g+v;h). This
allows servers to verify that the shares they received are
consistent with the commitments broadcast by the dealer.
Feldman commitments are the same as Pedersen commit-
ments, except that the auxiliary polynomial is zero.

It is assumed that each server has a public key encryption
scheme, and the encryption of MESSAGE for server P, is
denoted ENC,(MESSAGE). Each server also has a public
key signature scheme, and P,’s signature on MESSAGE is
denoted as SIG,(MESSAGE). RAND is used to denote an
arbitrary random value.

(3.2) System Overview

The system operates as follows, as shown in FIG. 6. The
client C distributes a sharing of his/her private key s among
the servers by executing a Secret-Share protocol 600 (t,C,
s,PU{C},Corr) with the servers. After this initial setup has
been done, the servers may run instances of a Robust-Sig-
Gen protocol (Robust -Signature protocol 602 in FIG. 6)
(t,P.Corr,[s],m) or a Client-Sig-Gen protocol (t,P.Corr,C,[s],
m) to generate a signature on message m. The question of
which messages will be signed at what time may be deter-
mined by interaction with the client, or may occur according
to some pre-determined schedule, or any trigger or signal
from another trusted system.

The servers periodically run a Secret-Redistribute proto-
col 604 (t,P,Corr,[s]) on each sharing [s] of a private key in
order to re-randomize the sharings, thereby preserving pri-
vacy of the stored values and ensuring long-term confiden-
tiality. The redistribution will be performed according to
some pre -determined schedule (e.g., every night at mid-
night) or in response to any outside or inside trusted signal
or trigger (e.g., in response to a command by a system
administrator). The present invention provides the protocols
and algorithms to perform such a redistribution; when and
why the redistribution is performed can be determined by
various other means and all could be seamlessly integrated
with the system according to the principles of the present
invention.

The servers 302 periodically perform the Proactive-Re-
fresh protocol 504 to correct any shares that may have been
corrupted. Finally, a Secret-Open protocol 606 is initialized
to reveal the private key s to an intended recipient, wherein
the private key s is used to compute the digital signature.

(3.3) The Robust Signature Generation Protocol

Below is a description of the signing algorithm of the
standard ECDSA signature scheme (i.e., that which is com-
puted on a single server and where the private key s is not
shared among multiple servers). The standard ECDSA sig-
nature scheme is described in Literature Reference Nos. 5
and 10.

To generate a signature on message m, the signer has to
perform the following, as described in Literature Reference
Nos. 5 and 10:

1. Compute e=SHA-1(m) and convert to an integer using
the approach in Literature Reference No. 16.

2. Select a random integer k such that 1=<k=q-1.

3. Compute (x,, y,)-k.g.

4. Convert X, to an integer using the approach in Litera-
ture Reference No. 16. Compute r=x; mod q. If r=0, return
to step 2.

5 Compute z=k !(e+sr) mod q. If z=0, return to step 2.

10

15

20

25

30

35

40

45

50

55

60

65

10

6. The signature over a message m using the key s is the
pair (r,z) (i.e., ECDSA (m)=(r,z).

The following protocol allows the servers to generate an
ECDSA signature from a sharing of a private key without
reconstructing and revealing the private key. The protocol
uses subprotocols that are defined below.

(3.3.1) Robust-Sig-Gen (t,P.Corr,[s],m)

To generate a signature on message m (known to all the
n servers) with private key s, perform the following:

1. Each server computes e=SHA-1(m) and converts e to
an integer using the approach in Literature Reference No.
16.

2. The n servers execute GenPoly (t,P,Corr,1,d) to gener-
ate a sharing of a secret random value [v] with Pedersen
commitments, and in parallel, the servers execute the Feld-
man version of GenPoly (t,P,Corr,1,d) to generate a sharing
of a secret random value [k] with Feldman commitments.

3. Let (x,, ¥,) denote k.g which is the commitment to the
constant coefficient of the sharing of [k]| generated in the
invocation of the GenPoly protocol (which is known to each
server). Convert x; to an integer using the approach in
Literature Reference No. 16.

4. Set r=x;mod q. If r=0 go to step 2.

5. The servers compute [vk]<—Multiply(t,P,Corr,[v],[k]).

6. The servers run Secret-Open (t,P,[vk]) to reveal vk. If
vk=0, then go to step 2.

7. The servers locally compute [k™*]=(vk)™'[v]mod q.

8. The servers compute [w] < Multiply(t,P,Corr,[s],[k~*]).

9. The servers locally compute [z]=[k™*Je+[w]r so that the
shared value is z=k ! (e+rs)mod q.

10. The servers run Secret-Open (t,P,[z]) to reveal z. If
7z=0 go to step 2.

11. The final ECDSA signature under the shared private
key s is:

ECDSA (m)=(r.2).

The communication complexity of the Robust-Sig-Gen
protocol is O(n?) (measured as the number of broadcast field
elements). It takes 35 rounds of communication (except with
negligible probability). The following Client-Sig -Gen pro-
tocol is similar to the Robust-Sig-Gen protocol in that it
allows the servers to generate an ECDSA signature using a
sharing of the private key. It differs in that the client C (on
behalf of whom the servers are storing the private key)
interacts with the servers, allowing for increased efficiency.

(3.3.2) Client-Sig-Gen (t,P.Corr,C,[s],m)

To generate a signature for client C on message m with
private key s, perform the following:

1. The client C computes e=SHA-1(m) and converts e to
an integer using the approach in Literature Reference No.
16.

2. The client broadcasts e to the servers.

3. The client selects 3 random values c., b, and k=0 from
7, and computes k™' and c=ob. The client chooses these
values so that the values r and z defined in steps 6 and 11
(respectively) are both non-zero.

4. The client and the servers execute 4 instances of the
Secret-Share protocol (t,C,s,PU{C},Corr) to generate shar-
ings of ., b, ¢, and k™. If the client is found to be corrupt
during execution, the protocol terminates.

5. The client broadcasts k.g=(x,, y;). Convert x,; to an
integer using the approach in Literature Reference No. 16.

6. Set r=x, mod q. If r=0, the protocol terminates.

7. The servers locally compute [a]=[s]+[ct] and [B]=
[k~']4+[b].

8. The servers invoke the Secret-Open protocol (t,P,[ct])
and the Secret-Open protocol (t,P,[p]) in parallel.

US 9,489,522 Bl

11

9. The servers locally compute [w]<—af-a[b]-pla]+[c].

10. The servers locally compute [z]=[k™']e+[w]r, so that
the shared value is z=k~'(e+rs) mod q.

11. The servers run the Secret-Open protocol (t,P.[z]) to
reveal z. If z=0, the protocol terminates.

12. The final ECDSA signature under the shared key s is:
ECDSA (m)=(r,z).

The communication complexity of the Client-Sig-Gen
protocol is O(n). If the client is uncorrupted, it takes 7
rounds of communication.

(3.4) Secret Sharing, Redistribution, and Opening

Modified versions of the Secret-Share protocol, the Gen-
Poly protocol, the Secret-Redistribute protocol, and the
Secret-Open protocol from U.S. patent application Ser. No.
14/207,321, which is hereby incorporated by reference as
though fully set forth herein, were used. These will imple-
ment basic tasks pertaining to secret sharing. For complete-
ness, the details of those protocols are outlined below.

A sharing of a secret s is denoted by [s]. Note that the
servers can perform affine operations on secrets locally by
performing the corresponding operations on their shares. For
instance, suppose secrets s, . . ., s have been shared and
the servers want to compute a sharing of r=a”+2 _ ‘a?s?
for some publicly known constants o, . . ., o”. Writing
server P;’s share of s(j) as s,”, P, can compute his share r, of
r as ri:a(°)+2j:11a(’)si(’). It all the servers perform this
operation locally, this operation is written as [r]:a(0)+2j:1]
a?[s?]. Since Pedersen commitments are used, these opera-
tions also have to be performed for the auxiliary polynomial,
and corresponding operations must be performed on the
commitments to each polynomial.

(3.4.1) Secret Sharing

The following protocol allows a dealer P, to share a secret
s using Pedersen commitments. Also described is a variant
of the protocol that uses Feldman commitments, which is
equivalent to a Pedersen commitment in which the auxiliary
polynomial is zero. Whenever this protocol (or the GenPoly
protocol below) is invoked, it is assumed the Pedersen
version is used, unless it is explicitly stated that the Feldman
version is used.

Secret-Share (t,P,s,P,Corr)

1. Share/Commitment Distribution 3

1.1 P, picks a random degree d-1 polynomial p(x) and

sets PX)=s+XIWX) =1+, (X)+. . . +ux%. P, also picks a
random degree d polynomial v(X)=v +V X+. . . +V, X
If this is the Feldman version of the protocol, it is
required that v be the all-zero polynomial.

1.2 P, computes €=, g+v;h for each k=0, . . . , d and
broadcasts
VSSPD:(D’{ENCPi[H(ai)av(ai)]}i:1'n>{ek}}F0d)
as well as
SIGp(VSSpy).

2. Error Detection
2.1 Each P,&Corr decrypts the message sent by P, to find
u(a),v(a,) and verifies that u(o,)g+v(e,)h?=2,_,%0,%,.
If this is the Feldman version of the protocol, P, also verifies
that v(a,)=0.
2.2 Any P,&Corr who detected a fault in step 2.1 broad-
casts

ACCPi:(i, accuse,D,RAND)

and

SIGp(ACCp).

5

10

15

20

25

30

35

40

45

50

55

60

65

12

2.3 For each properly signed accusation (from server P,)
made in step 2.2, P,, broadcasts

(D, defense,i, [1(0),v () |,RAND),

where RAND, is the randomness that was used to encrypt the
message for P, in step 1.2.

2.4 Each server checks to see if the defenses broadcast in
step 2.3 are correct (i.e., the defense was well-formed,
the pair encrypts to the same message broadcast in step
1.2 when the given randomness is used, and the pair
passes the checks in step 2.1). For each accusation that
was rebutted with a correct defense, the accuser is
added to Corr. If any accusation was not correctly
rebutted, P, is added to Corr. If P, is not found to be
corrupt, the protocol terminates successfully.

The communication complexity of the Secret-Share pro-
tocol is O(n) field elements. It takes three rounds of com-
munication. Multiple instances of the Secret-Share protocol
can be run in parallel without affecting the round complex-
ity. Note that the protocol does not necessarily terminate
successfully if the dealer is corrupt.

(3.4.2) Generating Random Polynomials

Let V be a Vandermonde matrix with n rows and n-t
columns, and let M=VZ. Suppose that x is an n-dimensional
vector with n—t of its coordinates having a uniformly ran-
dom distribution and the other t coordinates having an
arbitrary distribution independent of the n—t coordinates. It
was shown in Literature Reference No. 4 that under these
assumptions, all the coordinates of Mx have a uniformly
random distribution. It is assumed that there is a publicly
known M, fixed for each stage of the protocol.

Described below is a protocol for creating 1 random
polynomials with Pedersen commitments in parallel. As
with the Secret-Share protocol, also described is a Feldman
version. This protocol generates polynomials of degree D.
Note that one may have D=d.

GenPoly (t,P,Corr,1,D)

1. Proposal Distribution

1.1 I'=[1/(n-t)| is defined. Each server P,&Corr generates

21' random polynomials { (Qi(k),yi(k)})’ with deg
Qi(k):degy i(k):D' Qi(k)(x):qi,o(k)+qi,l(k)x+' .- +qi,D(k)XD
is written (and the coefficients for y,* are similarly
y; J(k)). If this is the Feldman version of the, protocol, it
is required that each y,® is the all-zero polynomial.

1.2 Each server P,&Corr computes ¢, J(k):qi J(k)g+yl. J(k)h.
Then P, broadcasts

VSSPi:(i,{ ENCP,,,[Qi(k)(am)ayi(k)(am)]}m:1n} =t

and
SIGp,(VSSp,).

1.3 Each server that did not produce a properly signed
message in the previous step is added to Corr.

2. Error Detection

2.1 Each server P &Corr checks for each pair [Q,,%(c.,),
v,,%(a,)] received in the previous step that Q,®(c.,)
g+y,, P (a)h?=2,_Paje, . If this is the Feldman
version of the protocol, P, also checks that v, “(c,).

2.2 If P, detected an error in the previous step with the pair
[Q,. %)y, ()], he broadcasts ACC,=)i,accuse,
m,k) and SIG,(ACC,. P, broadcasts an accusation no
more than once for each P,,, although there may be
more than one accusation per k.

2.3 If P, was accused (with a properly signed accusation)
in the previous step, he broadcasts his (purported) pair

US 9,489,522 Bl

13

of values along with the randomness RAND, ,,
was used to encrypt it in step 1.2:

4 that

Gdefensen [00,9, 1 RAND,,,,

2.4 Each server checks to see if the defenses broadcast in
step 2.3 are correct (i.e., the defense was well-formed,
the pair encrypts to the same message broadcast in step
1.2 when the given randomness is used, and the pair
passes the checks in step 2.1). For each accusation that
was rebutted with a correct defense, the accuser is
added to Corr. For each accusation that was not cor-
rectly rebutted, the accused server is added to Corr.

3. Local Share Manipulation

For each P,&Corr and each k,Q,* is defined to be the

all-zero polynomial. Each batch k of n polynomials will be
converted into a batch of n-t polynomials as follows:

The y* similarly used to construct the auxiliary polyno-
mials for the R®. Each server locally computes the Pedersen
(or Feldman) commitments for these polynomials. The out-
put is the set of shares of {R*’}_,’ along with the shares of
the corresponding auxiliary polynomials.

The communication complexity of GenPoly O(I'n*)=O
(In+n?) field elements (assuming that D=O(n)). It takes three
rounds of communication. Note that multiple instances of
the GenPoly protocol can be invoked in parallel, even if the
degrees of the generated polynomials are different.

(3.4.3) Secret Redistribution

The following protocol allows the servers to redistribute
a secret. This re -randomizes the sharing so that old shares
cannot be combined with new shares to learn the secret (thus
providing security against mobile adversaries). In addition,
it allows servers to correct shares they hold that may have
been altered by an adversary

Secret-Redistribute (t,P,Corr,[s])

It is assumed that the secret s has been correctly shared
with polynomial p and auxiliary polynomial v (both of
degree d) and that the Pedersen commitments for these
polynomials are known to all servers in P.

1. Polynomial Generation

Invoke GenPoly (t,P,Corr,n+1,d-1) in parallel to generate

Q and {R?”},_," of degree d-1 with auxiliary polyno-

mials y and { C(’)} 1" respectively. The k” coeffi-
cient of Q is q,, and similarly for R?,y,c%.

2. Commitment Transfer

2.1 Each P,&Corr broadcasts the commitments for the old
secret sharing polynomial (i.e., COM,={u,g+v,h},_ ¢
and SIG,(COM,). ’

2.2 Each P, determines the correct values for the com-
mitments broadcast in the previous step by siding with
the majority; P, updates its commitments accordingly.

3. Share Transfer and Interpolation

3.1 Bach P, computes 0, =1(o,)+0t Q((x)+(o,—a)R(’)(a)
and ¢, W(a Jrouy(o,)+(o,—o)C Xa,) and broadcasts

vss, = {ENC, [0,6, 1} ,-17) and SIG,,
(VSS P) The 1dea is that for P, the servers mask p with
the polyn0m1a1 XQ(X)+(x-0)R(’)x and similarly for v.

3.2 Bach P, checks whether the values broadcast in step
3.1 are correct given the publicly known Pedersen
commitments. That is, P; checks if

0, ,g+0; h2=u(0)g +,V(ai)h+2}F0d71 [aik+l(qu +
sla a0 Oe s m 1.

20

25

30

35

40

45

55

65

14

3.3 The new sharing polynomial is defined to be p'(x)=u
(x)+xQ(x), and similarly the new auxiliary polynomial
is V'(X)W(x)+xy(x) Since (x-a.)R(’)x evaluates to zero
at x=a, P, can deduce w'(a) from the points on p'(X)+
(x-ao)R(’)(x) sent to him by the servers (and similarly
for V'((x 7). So each P; uses all the shares that passed the
check in step 3.2 to interpolate his new share w'(c.), as
well as v'(c.). The servers compute the commitments to
W' and v' using publicly known commitments to p,Q,v,
and y. 4. Data Erasure

Each P, erases their shares of 11,Q,v, and y, and each RY
and ¢V, along with the corresponding commitments, and
sets Corr=.

The communication complexity of the Secret-Redistrib-
ute protocol is O(n®) field elements. It takes 6 rounds of
communication.

(3.4.4) Secret Opening

The following protocol allows the servers to open a secret
that has been shared with Pedersen commitments.

Secret-Open (t,P[s])

It is assumed that the secret s has been shared with
polynomial p and auxiliary polynomial v (both of degree d).
If the k” coefficient of u is ,(and similarly for v,), then it
is assumed that the Pedersen commitments €,=,g+v;h for
each k=0, . . ., d are publicly known.

1. Each server P, broadcasts his shares SH,=[u(c,), v(c,)]
and SIG,(SHp). ’

2. Bach server check for each pair of points p(a),v(ct,)
received in the previous step that

u(oy)g+v (aj)h?ZE}FOdajkEk'

3. Each server uses all the points that passed the check in
step 2 to interpolate the secret s=u(0).

The communication complexity of the Secret-Open pro-
tocol is O(n) field elements. It takes one round of commu-
nication. Multiple instances of the Secret -Open protocol can
be invoked in parallel while still taking only one round of
communication.

(3.5) Multiplication

Multiplication triples of shared secrets need to be gener-
ated in a verifiable manner. The protocol fir generating
multiplication triples in Literature Reference No. 4 uses a
degree d sharing of a random number r, together with a
degree 2d sharing of the same value. Using a 2d sharing
would be problematic for the protocol according to the
principles of the present invention, so instead two random
sharings [r] and [s] are used, and when a degree 2d sharing
of r is wanted, the servers locally compute [r]+x“[s].

The following protocol Multiplication-Triple (t,P,Corr,

iyl { [+ 1. [s@ 1, [¥ 1. [3© 1} "), which
is a modified version of the protocol from U.S. patent
application Ser. No. 14/207,483 (which is hereby incorpo-
rated by reference as though fully set forth herein) uses the

sharings [l [y1.{ [], [s®].[#], [5@]},
to generate (correct) sharings [b] and [c] such that c=ab.
Multiplication-Triple

wecomapit [« 1 [s@ 1 [1,
[0 1}

In what follows, the capital letter for the polynomial that
shares the secret represented by the corresponding small
letter (i.e., A(Q)=0.RV(0)=r?, etc.) is used. The auxiliary
polynomials will have overlines (e.g., the auxiliary polyno-
mial for A is A). The following steps are performed in
parallel for each server P&Corr.

US 9,489,522 Bl

15
1. Generating Multiplicands
P, randomly chooses two values b® and b® then invokes
Secret -Share (t,P,,b® P.Corr) and Secret-Share (t,P,b®,P,
Corr) in parallel. The polynomial used to share b() is

denoted by B® (with auxiliary polynomial B®), and the 5

polynomial used to share b is denoted by B® (with aux-
iliary polynomial B®). If P, is added to Corr in the invoca-
tion of Secret-Share, then the following steps are not per-
formed for P,.

2. Opening Masked Products

2.1 Each server P&Corr broadcasts shares of [a]

[6@]+ [t®]+x9s®] and [y], together with cor-
responding shares of auxiliary polynomials:

— i i (i
0,=4(0,)BP () +RP(a)+0, S5V),

@~A(0)B(a)+RP(0y)+0,75(y), Yoy), Tloy),
SIGp (8,4, Y(), T(a).
The shares of [y] are not used until step 5.3. They are
broadcast here simply to reduce round complexity.
2.2 P, checks for each (6,, ¢,) broadcast in the previous
step that

0,230 ¢.72=BP)(o)(4(ct)g+A o)+ (R a)g+
RO(ayh+ay d(S(’))(a)g+5<’)(a Jh).
Recall that P, can compute the Pedersen commitments to P,’s
shares of . r(l)) and S using the publicly known comm1t-
ments.
2.3 For any pair (8, ¢,) that did not pass the check in the
previous step, P, broadcasts

ACCp=(Pyaccuse,PB(0y), BO(c), RAND;)
and
SIGp(ACCp),

where RAND, ; is the randomness used to encrypt P,’s shares
in the invocation of Secret-Share in step 1.

2.4 If P, broadcasts a correct accusation against P, (i.e.,
the values encrypt to the same message sent in the
invocation of Secret-Share in step 1 when the given
randomness is used, and these values do not correspond
to the values (8,, ¢;) broadcast in step 2.1) then j is
added to Corr. If P, broadcasts an incorrect accusation
against P, then P, is added to Corr.

3. Revealing Corrupt Servers’ Shares

3.1 The servers invoke one instance of GenPoly (t,P,Corr,
3n,d-ICorrl)(i.e., this step is not run for each P,, but
rather once for all the P,). This generates polynomials
M, O M, M,? with auxiliary polynomials M,®,
M (l) M l)

3.2 The polynomials W, O W @, are defined by W, “(x)=
M, OO0 L, (x-1) and W)
M, O, (x-0y). Each server P, broadcasts

wEeCorr
SH; =W, P (a)+4(a), W, () +RP(av), W3P(ay) +
59y Wl(l)(a) +4(0), W50 () +R(’)(0t)
Ws(’)(a)+5(’)(0t)
and SIG (SH)
33 In’ parallel with the previous step, P, broadcasts
CorSh, ={B®(0,)} ., along with SIG (CorShy,).
3.4 Each szerver checks for each pair broadcaszt in step 3.2
that it corresponds to the publicly known Pedersen
commitments. The shares that pass the check are used
to interpolate the shares of [ci],[r”], and [s”] belonging
to servers in Corr, and together with the shares broad-
cast in the previous step, these are used to compute the
corrupt servers’ shares of ab®+r®,

10

15

20

25

30

35

40

45

50

55

60

65

16

4. Steps 2 and 3 are also performed to distribute and check

shares of [a] [5@]+ []+x“3®]. The two executions
of these steps are to he performed in parallel.
5. Checking Multiplication Triples
5.1 Bach server interpolates D®=ab®+r® and [Y)=cb®+
#® from the shares of all servers not in Corr that were
broadcast in step 2.1 and the shares of servers in Corr
that were computed in step 3.4.

5.2 Each server locally computes

[@] and [Q)] :ﬁ(i)_[f(i)].
5.3 The servers interpolate y from the shares broadcast in
step 2.1 that correctly correspond to the commitments.

5.4 Invoke Secret-Open (t,P, [b(l)]+y [b(l)]) to get
h® b(1)+yb(l)

5.5 Invoke Secret- Open AP, [® J4y [c®]-6P[a])
to get Z=tP+ycP-bPq.
5.6 If z)=0, then P, is added to Corr.

[b]=2[b'] and [c]=Z [¢®] are defined, where the sums
are taken over all i such that P,&Corr. The servers locally
compute these sharings (along with their Pedersen commit-
ments), and the multiplication triple is taken to be ([c],[b],
[c]) with c=ab.

The communication complexity of the Multiplication-
Triple protocol is O(n?). It takes 11 rounds of communica-
tion.

The following protocol computes a sharing of Xy given a
sharing of x and a sharing of y. It uses the Multiplication-
Triple protocol as a subprotocol and employs Beaver’s
multiplication technique. Beaver’s multiplication technique
is described in Literature Reference No. 1. Multiplication is
used as a subprotocol in the Robust-Sig-Gen protocol.

Multiply (t,P,Corr,[x],[y])

1. The servers invoke GenPoly (t,P,Corr,2+4n,d) to gen-
erate 2+4n sharings of random values.

2. The servers invoke Multiplication-Triple using the
2+4n random sharings generated in the previous step as
input; denote the output triple as ([c],[b],[c]) with
c=ab.

3. The servers locally compute [a]=[x]|+[c] and [B]=]y]+
[b].

4. Invoke Secret-Open (t,P,[ct]) and Secret-Open (t,P,[f])
in parallel.

5. The servers locally compute the output of the protocol
as [xyl=aB-a[bl-Blal+[c].

The communication complexity of the Multiply protocol

is O(n?). It takes 15 rounds of communication.

Computing the ECDSA signatures in a distributed manner
according to the principles of the present invention guaran-
tees significantly increasing security, because it eliminates a
single point of failure/compromise (i.e., a single server) as
an adversary/attacker must compromise multiple servers in
order to retrieve the private key used to compute the digital
signature or affect its computation. In addition, such a
compromise has to occur between two proactive refresh
cycles, because all information obtained from servers in
previous cycles will be irrelevant when a proactive refresh
cycle is executed as new randomized shares of the keys are
generated. These new shares cannot be used with old ones to
reconstruct the private key.

ECDSA signatures, standardized in the FEDERAL
INFORMATION PROCESSING STANDARDS PUBLI-
CATION, FIPS PUB 186-4: Digital Signature Standard
(DSS) (see Literature Reference No. 5), are used to generate
digital signatures which ensure integrity of transmitted data

[c® J=DO-

US 9,489,522 Bl

17

online, can be used for authentication of data and entities
online, and are also used in a variety of digital currency and
financial transactions (e.g., Bitcoin, Litecoin, Ripple, and
others digital currencies). The present invention, thus, has a
large set of applications to which it could be applied.

For instance, companies can use the present invention to
design and implement remote access to Internet-enabled/
connected vehicles. Individuals who have access to the
vehicle can do so without risk of compromise of their private
keys, which can be stored in a distributed manner on a user’s
mobile device(s), security token and/or backend servers. If
a user’s device or backend server, or the operator thereof, is
compromised, the private key will not be revealed. Requir-
ing a private key for authentication will guarantee that
individuals without proper access will not be able to access
the vehicle. In addition to the private key, a biometric (e.g.,
fingerprint, palm vein scan) can also be stored in a distrib-
uted manner, and both an ECDSA-based digital signature
and biometric data can be used for authentication.

Additionally, future connected vehicles may require Pub-
lic Key Certificates in their operation. Manufacturers will
need to generate such certificates and load them into
vehicles. Those certificates have to be signed by a manu-
facturer’s private key (or multiple keys) which have to be
stored securely. The system according to the principles of
the present invention would allow a manufacturer and/or it’s
supplier to secure the private keys and compute such sig-
natures in a distributed manner. The ability to efficiently
perform distributed computations using secret shared private
keys is a very important step to securing future infrastructure
of connected vehicles.

Further, companies can utilize the system described
herein for facility access to extremely sensitive facilities.
Such facilities may not wish to store lists of individuals who
may access particular rooms, such as sensitive compart-
mented information facilities (SCIFs). The present invention
will allow only authorized users to access such facilities
without storing their entire identifying information and
private key at the facility.

What is claimed is:

1. A system for generation of elliptic curve digital signa-
ture algorithm (ECDSA) based digital signatures, the system
comprising:

one or more processors and a non-transitory computer-

readable medium having executable instructions

encoded thereon such that when executed, the one or

more processors perform operations of:

initializing a Secret-Share protocol between a client C
and a set of n servers, wherein the client C shares a
set of shares of a private key s among the set of n
servers;

initializing, by the set of n servers, a protocol to
generate a digital signature on a message m using the
set of shares of the private key s without reconstruct-
ing or revealing the private key s;

periodically initializing, by the set of n servers, a
Secret-Redistribute protocol on each share of the
private key s to re-randomize the set of shares; and

wherein a threshold t of up to n/2 of the set of n servers
can be completely corrupted or compromised by an
active adversary while the confidentiality of the
private key s and correctness of the digital signature
remain uncompromised.

2. The system as set forth in claim 1, wherein the one or
more processors further perform an operation of initializing
a Secret-Open protocol to reveal the private key s to an

10

15

20

25

30

35

40

45

50

55

60

65

18

intended recipient, wherein the private key s is used to
compute the digital signature.

3. The system as set forth in claim 2, wherein in order for
an adversary to retrieve the private key s, the adversary must
compromise a plurality of servers in the set of n servers.

4. The system as set forth in claim 3, wherein if a majority
of'the set of shares of the private key s is not corrupted, then
the set of n servers jointly restore any corrupted shares.

5. The system as set forth in claim 4, wherein corrupted
servers are restored to an uncorrupted state.

6. A computer-implemented method for generation of
elliptic curve digital signature algorithm (ECDSA) based
digital signatures, comprising:

an act of causing one or more processors to execute

instructions stored on a non -transitory memory such

that upon execution, the one or more processors per-

form operations of:

initializing a Secret-Share protocol between a client C
and a set of n servers, wherein the client C shares a
set of shares of a private key s among the set of n
servers:

initializing, by the set of n servers, a protocol to
generate a digital signature on a message m using the
set of shares of the private key s without reconstruct-
ing or revealing the private key s; and

periodically initializing, by the set of n servers, a
Secret-Redistribute protocol on each share of the
private key s to re-randomize the set of shares; and

wherein a threshold t of up to n/2 of the set of n servers
can be completely corrupted or compromised by an
active adversary while the confidentiality of the
private key s and correctness of the digital signature
remain uncompromised.

7. The method as set forth in claim 6, wherein the one or
more processors further perform an operation of initializing
a Secret-Open protocol to reveal the private key s to an
intended recipient, wherein the private key s is used to
compute the digital signature.

8. The method as set forth in claim 7, wherein in order for
an adversary to retrieve the private key s, the adversary must
compromise a plurality of servers in the set of n servers.

9. The method as set forth in claim 8, wherein if a majority
of'the set of shares of the private key s is not corrupted, then
the set of n servers jointly restore any corrupted shares.

10. The method as set forth in claim 9, wherein corrupted
servers are restored to an uncorrupted state.

11. A computer program product for generation of elliptic
curve digital signature algorithm (ECDSA) based digital
signatures, the computer program product comprising:

computer-readable instructions stored on a non-transitory

computer-readable medium that are executable by a

computer having one or more processors for causing

the one or more processors to perform operations of:

initializing a Secret-Share protocol between a client C
and a set of n servers, wherein the client C shares a
set of shares of a private key s among the set of n
servers:.

initializing, by the set of n servers, a protocol to
generate a digital signature on a message m using the
set of shares of the private key s without reconstruct-
ing or revealing the private key s; and

periodically initializing, by the set of n servers, a
Secret-Redistribute protocol on each share of the
private key s to re-randomize the set of shares; and

wherein a threshold t of up to n/2 the set of n servers
can be completely corrupted or compromised by an

US 9,489,522 Bl

19

active adversary while the confidentiality of the
private key s and correctness of the digital signature
remain uncompromised.

12. The computer program product as set forth in claim
11, further comprising instructions for causing the one or
more processors to perform an operation of initializing a
Secret-Open protocol to reveal the private key s to an
intended recipient, wherein the private key s is used to
compute the digital signature.

13. The computer program product as set forth in claim
12, wherein in order for an adversary to retrieve the private
key s, the adversary must compromise a plurality of servers
in the set of n servers.

14. The computer program product as set forth in claim
13, wherein if a majority of the set of shares of the private
key s is not corrupted, then the set of n servers jointly restore
any corrupted shares.

15. The computer program product as set forth in claim
14, wherein corrupted servers are restored to an uncorrupted
state.

10

15

20

20

